Experimental Research on Metacognitive Competence Development at Freshmen Students from Three Romanian Universities

Mihai STANCIU – USAMV, Iaşi; Constanţa DUMITRIU- University of Bacău; Otilia CLIPA- University of Suceava; Aurora-Adina IGNAT – University of Suceava; Liliana MÂŢĂ - University of Bacău; Carmen-Olguţa BREZULEANU – USAMV, Iaşi;

Plan presentation

STANCIU et al.-ICEEPSY 2011

- **I. Metacognition concept**
- II. Experimental procedure
- 2.1. The hypothesis
- 2.2. The objectives of the project
- 2.2. Methodology
- III. Results
- IV. CONCLUSIONS
- REFERENCES

STANCIU et al.-ICEEPSY 2011

I. Metacognition concept

- "Metacognition is the segment of stored knowledge that has to do with people as cognitive creatures and with their diverse cognitive tasks, goals and actions" (Flavell, 1979).
- Metacognitive knowledge is divided into three categories: knowledge of person variables, task variables and strategy variables (Flavell, 1983).
- Brown (1987) specifically delineated four components of metacognition: 1) planning, 2) monitoring, and 3) evaluating, and 4) revising.
- The metacognition is focused on the active monitoring and on the cognitive process regulation.

STANCIU et al.-ICEEPSY 2011

3

2.2. Methodology

- 2.2.1 The research sample comprises 343 students, and it is structured in terms of independent variables as following: upon the gained results variable (239 students with all exams passes/ 104 students with failure exams); upon the gender variable (266 female/ 77 male);
- 120 students from University of Bacău; 105 from University of Suceava; 118 from U.S.A.M.V. Iaşi, Romania);

STANCIU et al.-ICEEPSY 2011

2.2.2 The concept operational and the variable definition

- The metacognitive competencies concept was made operationally through 8 categories: capacity of taking notes, capacity of planning and presenting an individual project, capacity of planning and presenting a group project, capacity of planning and presenting a scientific paper, capacity of planning a learning system, capacity of following a learning system, capacity of assessing a learning system, capacity of material structuring.
- The dependent variables are the metacognitive competencies. The independent variables are: gender, the gained results, university, the graduated high school type, the didactic experience.

STANCIU et al.-ICEEPSY 2011

III. Results

- *Work hypothesis 1*: The development level of the metacognitive competencies has significant differences in terms of *results*.
- In order to verify this hypothesis we have applied Independent Samples Test. The results show that there is no significant differences in terms of the results variable.

STANCIU et al.-ICEEPSY 2011

• The hypothesis is not confirmed.

Metacognitive competencies	Gender	Mean
systematic notes at courses	Female	3.33
	Male	2.89
	Total	3.23
planning and presenting an	Female	2,93
	Male	2,70
individual project	Total	2,88
olanning a learning system	Female	2,93
planning a learning system	Male	2,70
	Total	2,88
follow a learning system	Female	3,15
ionon a loannig oyotoni	Male	2,87
	Total	3,09
assessing a learning system	Female	2,91
	Male	2,72
	Total	2,87
material structure	Female	3,30
	Male	3,09
	Total	3,26

Metacognitive competencies	The graduated high school type	Mean	N
planning and presenting an individual project	Theoretical	2,87	154
	Vocational	3,15	59
	Technical	2,76	126
	Total	2,88	339
planning and presenting a scientific paper	Theoretical	2,32	154
	Vocational	2,76	59
	Technical	2,29	126
	Total	2,38	339
planning a learning system	Theoretical	2,76	154
	Vocational	3,25	59
	Technical	2,83	126
	Total	2,87	339
assessing a learning system	Theoretical	2,77	154
	Vocational	3,08	59
	Technical	2,89	126
	Total	2,87	339
material structure	Theoretical	3,20	154
	Vocational	3,49	59
	Technical	3,21	126
	Total	3,25	339

3.6. Work hypothesis 5: in terms of *didactic experience*

Metacognitive competencies	Didactic experience	Mean
planning and presenting an	No didactic experience	2,81
	Didactic experience	3,20
individual project	Total	2,88
planning and presenting a	No didactic experience	2,32
	Didactic experience	2,71
scientific paper	Total	2,38
planning a learning system	No didactic experience	2,77
	Didactic experience	3,37
	Total	2,88
follow a learning system	No didactic experience	3,04
	Didactic experience	3,31
	Total	3,09
assessing a learning system	No didactic experience	2,81
	Didactic experience	3,14
	Total	2,87
material structure	No didactic experience	3,19
	Didactic experience	3,54
	Total	3,25
STANCIU et alICEEPSY 2011		12

IV. CONCLUSIONS

 1. University professors must be empowered with the modern teaching approaches in view of the higher value on the powers of oneself in the 21st century.

 2. organization with students of "learning workshop" to improve their techniques of efficient learning.

CONCLUSIONS (2)

STANCIU et al.-ICEEPSY 2011

- 3. Dissemination and generalization of the acquired experience:
- organization of a workshop for the students and teaching staff (30 oct. 2010);
- organization of a symposium on the university pedagogy issue The focus of the educational process on the students` needs and interests. Modernization directions of the teaching – learning –evaluation process within higher education (20 nov. 2010);
- elaboration and the publication of a guide about efficient learning;
- setting up a Regional Center of Pedagogical Pedagogy (RCUP) for the north-east developing region.

STANCIU et al.-ICEEPSY 2011

13

REFERENCES

- Brown, A. L., & DeLoache, J. S.(1978). *Skill, plans and self-regulation*, Hillsdale, NJ. :Lawrence Erlbaum.
- Brown, A. L. (1987). *Metacognition, Executive control, Self-regulation,* and Other more mysterious mechanisms, Hillsdale, NJ: Lawrence Erlbaum.
- Flavell, J.H. (1976). Metacognitive Aspects of Problem Solving. *In* L.B. Resnick (dir.), *The Nature of Intelligence*. Hillsdale, NJ: Lawrence Erlbaum.
- Flavell, J. H.(1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. *American Psychologist, 34*, 906-911.
- Flavell, J. H. (1983). *Cognitive development during the postinfancy years*. Washington, DC, US: National Academy of Sciences.
- Flavell, J. H.(1987). Speculations about the nature and development of *metacognition*, Hillside, NJ: Lawrence Erlbaum.

STANCIU et al.-ICEEPSY 2011

15

<text><text><text><page-footer>